New Area Efficient Residue-to-weighted Number System Converters

نویسندگان

  • Jimson Mathew
  • D. Radhakrishnan
  • T. Srikanthan
چکیده

Residue number system is popular in high performance arithmetic applications like digital signal processing because of its carry free nature, modularity and error correcting properties. But these opportunities are eclipsed by the high area and time requirements for reverse conversion. In this regard, we present two new techniques for residue-toweighted number system conversion. The first one is based on the popular Chinese Remainder Theorem. Here by evaluating the quotient the number is decoded. The second one deals with residue-to-mixed radix conversions. The arithmetic based technique replaces the conventional hardware intensive look up tables by simple adders. An OHR based high speed MRC is also presented. The mixed radix converters described are memoryless and are hardware efficient compared to conventional techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

Low Complexity Converter for the Moduli Set {2^n+1,2^n-1,2^n} in Two-Part Residue Number System

Residue Number System is a kind of numerical systems that uses the remainder of division in several different moduli. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers will increase the speed of the arithmetic operations in this system. However, the main factor that affects performance of system is hardware complexity of reverse converter. Reverse co...

متن کامل

New Arithmetic Residue to Binary Converters

The residue number system (RNS) is a carry-free number system which can support high-speed and parallel arithmetic. Two major issues in efficient design of RNS systems are the moduli set selection and the residue to binary conversion. In this paper, we present two efficient residue to binary converters for the new three-moduli set {2, 2 + 1, 2 – 1}. This moduli set consists of pairwise relative...

متن کامل

Efficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS

Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000